Resources and Raw Materials: Measurement of the Efficient Use and the Benefits of Closing the Loops

Jo Dewulf, Ghent University
&
Gian Andrea Blengini, Fabrice Mathieux and David Pennington, EC-JRC
1. Background
2. Resource efficiency
3. Exergy as a base to quantify Resource efficiency
4. Natural Resources versus Raw Materials
5. Quantification of benefits of open and closed loop recycling
6. Conclusions
1. Background
FOCUS ON RESOURCES
LIFE CYCLE THINKING
THERMODYNAMIC PRINCIPLES
The mission of the IES is to provide scientific-technical support to the European Union's policies for the protection and sustainable development of the European and global environment.

Sustainability Assessment Unit:
- fosters sustainability principles in EU policies
- hosts the European Platform on Life Cycle Assessment (EPLCA).
EU “Raw Materials Initiative”:

- **Aim:** securing sustainable supply of raw materials
- **Launched in 2008, consolidated in 2011**
- **Non-energy, non-agricultural raw materials**
- **Connecting EU external and internal policies**
- **Integrated strategy (3 pillars)**
- **Introduced list of Critical Raw Materials (CRMs) in 2011 and 2014**

Ensure level playing field in access to resource in third countries

Foster sustainable supply from European sources

Boost resource efficiency and recycling
2. Resource efficiency
Resource efficiency = ______________________

Inputs/Burden/Impact

Benefits:
- Benefits: €? Kg? MJ?
- Inputs/Burden/Impact: What? From where?
A framework for Resource efficiency metrics:

<table>
<thead>
<tr>
<th>Fields of study: environmental science and engineering versus environmental policy</th>
<th>Level 1</th>
<th>Level 2 (Eco-efficiency)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resource efficiency at flow level (RE-FL)</td>
<td>Resource efficiency at impact level (RE-IMP)</td>
</tr>
<tr>
<td>Benefits over resource flows (natural, waste or industrial)</td>
<td>Benefits over emission flows (often the reciprocal is used)</td>
<td>Benefits over impacts derived from the resource flows</td>
</tr>
<tr>
<td></td>
<td>Emission efficiency at flow level (EM-FL)</td>
<td>Emission efficiency at impact level (EM-IMP)</td>
</tr>
<tr>
<td>Benefits over emission flows (often the reciprocal is used)</td>
<td>Benefits over impacts derived from the emission flows</td>
<td>Benefits over impacts from both resource and emission flows</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Micro-scale</th>
<th>Gate-to-gate perspective</th>
<th>Level 2 (Eco-efficiency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perspective</td>
<td>benefits over (kg) resources</td>
<td>benefits over (ADP) impact</td>
</tr>
<tr>
<td></td>
<td>benefits over (kg) emissions</td>
<td>benefits over (GWP) impact</td>
</tr>
<tr>
<td></td>
<td>benefits over (kg) resources in life cycle</td>
<td>benefits over single score impact</td>
</tr>
<tr>
<td></td>
<td>benefits over (kg) emissions in life cycle</td>
<td>benefits over single score impact in life cycle</td>
</tr>
<tr>
<td></td>
<td>GDP over (kg) domestic extracted resources</td>
<td>GDP over domestic (ADP) impact</td>
</tr>
<tr>
<td></td>
<td>GDP over (kg) domestic emissions</td>
<td>GDP over domestic (GWP) impact</td>
</tr>
<tr>
<td></td>
<td>GDP over (kg) global extracted resources</td>
<td>GDP over global (ADP) impact</td>
</tr>
<tr>
<td></td>
<td>GDP over (kg) global emissions</td>
<td>GDP over global (GWP) impact</td>
</tr>
<tr>
<td></td>
<td>GDP over global (ADP) impact</td>
<td>GDP over global single score impact</td>
</tr>
<tr>
<td></td>
<td>GDP over global (GWP) impact</td>
<td>GDP over global single score impact</td>
</tr>
</tbody>
</table>

Only 2 universal units that are able to capture energy and mass:
- Economic sciences: €
- Natural Sciences : MJ_{exergy}

Source: Huysman et al., RCR, 2015a
3. Exergy as a base to quantify Resource Efficiency
What if our world were an infinite hazy desert? The sand and air are warm, an ocean of energy – energy everywhere. But if you try to use it, it doesn’t work. A landscape of uniformity, nothing concentrated, nothing unique.
Mankind uses these resources and brings them to the reference environment e.g. oil to CO₂, water from high to low, steam to water, ... (conservation of energy?)
exergy is a measure of work potential or disequilibrium from the environment.

While **exergy** can be destroyed, **energy** cannot.

exergy is the useful portion of **energy**.

exergy is what most mean when they say **energy**.
Efficiency analysis using exergy

2nd law of thermodynamics:
‘all real processes generate entropy’
‘all real processes generate loss of work potential’

Source: Dewulf et al. ES&T, 2008
Exergy analysis features: at process, gate-to-gate and cradle-to-gate level
Micro-level:
Product/process: gate-to-gate and life-cycle level

Approach:
- Industrial collaborations
- Micro-level
- Process based life cycle
- Exergy-based quantification

Overall resource efficiency:
Cumulative Degree of Perfection
Macro-level: Coupling EE-IO Databases with Exergy Accounting of Resources

Source: Huysman et al. ES&T, 2014
4. Natural Resources versus Raw Materials
Natural Environment: Asset of Natural Resources

Natural Resources

Primary Production

Raw Materials and Primary energy Carriers

Manufacturing

Products and Services

End-use

Waste

End-of-Life: energy and/or material recovery or disposal

Natural Resources:

Heterogeneous definitions:
- OECD:
 - asset in nature,
 - starting point econ. production
- EC 2005:
 - Source and sink functions (incl. ecosystem services)

Consequences of definition on:
→ ‘Resource’ efficiency
→ ‘Natural Resources’ as AoP in LCA

Natural Resource assets:
- Abiotic resources (stocks)
- Abiotic resources (flows)
- Air and water bodies
- Natural biomass
- Land and water surface

Sources: Dewulf et al., J. Ind. Ecol., 2015; Dewulf et al., ES&T, 2015
Raw Materials:

Heterogeneous definitions:

- As they occur in the natural environment, next to flow resources (EC 2005)

- Partially processed natural resources (e.g., chemical, high-tech raw materials), also even processed waste (e.g., scrap: so-called secondary raw materials) (EC 2008)

→ Need for common understanding

Sources: Dewulf et al., J. Ind. Ecol., 2015; Dewulf et al., ES&T, 2015
Natural Environment: Asset of Natural Resources

Natural Resources

Primary Production

Raw Materials and Primary energy Carriers

Manufacturing

Products and Services

End-use

Waste

End-of-Life: energy and/or material recovery or disposal

Proposed definitions:

Primary:
- Raw Materials are result from primary production processes:
 - Mining
 - Growing
 - Harvesting
 - Refining
- Raw Materials are typical first market commodities
- Depending on future applications:
 - [Primary] [nonenergy] Raw Mat.
 - Primary energy carriers

Secondary: Waste:
- Source of secondary materials or of energy
- Enters operations like:
 - Recycling/Downcycling
 - Incineration

Sources: Dewulf et al., J. Ind. Ecol., 2015; Dewulf et al., ES&T, 2015
Classification of primary raw materials:

- **85 raw materials (7 subgroups)**
- **30 primary energy carriers (5 subgroups)**

<table>
<thead>
<tr>
<th>ORIGIN OF RAW MATERIALS</th>
<th>RAW MATERIAL GROUP</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrestrial biomass (for material applications)</td>
<td>Agricultural raw materials</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Forestry raw materials</td>
<td>12</td>
</tr>
<tr>
<td>Aquatic biomass for food and material applications</td>
<td>Aquaculture raw materials</td>
<td>2</td>
</tr>
<tr>
<td>Water (components)</td>
<td>Freshwater raw materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Raw materials from seawater</td>
<td>3</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>Raw Materials from atmosphere</td>
<td>3</td>
</tr>
<tr>
<td>Fossil fuels (for material applications)</td>
<td>Petroleum raw materials</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Raw Materials from natural gas</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Raw materials from non-conventional fossil fuels (shale gas, oil sands, methane hydrates, coal bed methane ...)</td>
<td>3</td>
</tr>
<tr>
<td>Metal ores</td>
<td>Ferrous metals raw materials</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Non-Ferrous bulk/traditional metal raw materials</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Non-Ferrous rare metal raw materials</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Non-ferrous precious/high tech metal raw materials</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Alkali metal raw materials</td>
<td>3</td>
</tr>
<tr>
<td>Natural deposits of industrial minerals and construction materials</td>
<td>Construction minerals and mineral materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Industrial minerals and mineral materials</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORIGIN OF PRIMARY ENERGY CARRIERS</th>
<th>PRIMARY ENERGY CARRIER GROUP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrestrial biomass (for energy applications)</td>
<td>Energy crops</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Forestry products (for energy)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Soil products</td>
<td>1</td>
</tr>
<tr>
<td>Aquatic biomass (for energy applications)</td>
<td>Aquaculture energy products</td>
<td>1</td>
</tr>
<tr>
<td>Flow resources (solar, water, wind and geothermal)</td>
<td>Solar based energy carriers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Hydropower based energy carriers</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Wind energy based energy carriers</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Tidal energy based energy carriers</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Geothermal based energy carriers</td>
<td>1</td>
</tr>
<tr>
<td>Fossils for energy applications</td>
<td>Coal and lignite energy carriers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Petroleum based energy carriers</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Natural gas based energy carriers</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Non-conventional fossil based energy carriers (shale gas)</td>
<td>1</td>
</tr>
<tr>
<td>Nuclear energy metal ores</td>
<td>Nuclear energy based energy carriers</td>
<td>2</td>
</tr>
</tbody>
</table>

Source: Dewulf et al., J. Ind. Ecol., 2015
5. Quantification of benefits of open and closed loop recycling
Context:
EU policy on Single Market for Green Products
Flemish Policy Support Centre: SUMMA

Goal:
Development and application of a framework for resource efficiency indicators of (plastic) waste stream recovery
Method relies on two principles:

- **Benefit rates (Ardente & Mathieieux, 2014):**

\[
R'_{\text{cyc,n}} = \frac{\sum_{i=1}^{P} \sum_{j=1}^{N} m_{\text{recycl},i,j} \cdot RCR_{i,j} \cdot D_{n,i,j} + \sum_{i=1}^{P} \sum_{j=1}^{N} m_{\text{recycl},i,j} \cdot RCR_{i,j} \cdot (V_{n,i,j} - R_{n,i,j})}{\sum_{j=1}^{P} \sum_{i=1}^{N} m_{i,j} \cdot V_{n,i,j} + M_n + U_n + \sum_{j=1}^{P} \sum_{i=1}^{N} m_{i,j} \cdot D_{n,i,j}} \cdot 100
\]

- Avoided Impact due to recycling
- Impact due to production of virgin material

Initially developed for product, here tailored for waste streams

- **Resource consumption quantified in MJ_{ex}**
Method defines different scenarios:
Case 1: Ekol: plastics in household waste
(±13000 ton per year processed, with PE/PP focus)

Benefit rates of recycling:
- 72.9%
- 1.28-1.64 kg oil equivalent per kg of pellets recycled

Sources: Huysman et al., RCR, 2015b; Van Eygen et al., RCR, submitted
Applications of pellets

Recycled PE/PP
Virgin PET
Concrete
Recycled PE/PP
Iron
Wood
Recycled PE/PP
Wood

Sources: Huysman et al., RCR, 2015b; Van Eygen et al., RCR, submitted
Case 2: Galloo: plastics in e-waste

(± 20000 ton per year)

Benefit rates of recycling of PS:
- 78.2%
- 1.32-1.84 kg oil equivalent per kg of pellets recycled
6. Conclusions

- Need for common understanding of:
 - *Natural Resources*
 - *Raw Materials*
 - *Resource Efficiency*

- Physical Resource Efficiency: role of exergy

- Importance of closing loops for resource efficient society, with need of metrics
Thank you for your attention!

Welcome to contact at:

Jo.Dewulf@UGent.be